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Two interpenetrating point lattices contain under certain conditions a common sublattice, i.e. a 
'coincidence-site lattice' (CSL). The present study is restricted to cubic lattices [primitive cubic (p.c.), 
f.c.c, and b.c.c.]. It is shown that it is necessary for the existence of a CSL that the two lattices are re- 
lated by a rotation R represented by a rational matrix in the cubic coordinate system of one of the 
lattices. It is further shown that the common denominator N in R is equal to the ratio Z of the unit 
volume of the CSL referred to the unit volume of the crystal lattice. The 'complete pattern-shift lattice' 
(DSCL) is defined as the coarsest lattice which, in CSL orientation, contains both crystal lattices as 
sublattices. Further it is proved that the volume of the DSCL unit referred to the crystal unit is 1/Z and 
that for the p.c. structure the CSL and the DSCL are reciprocal lattices. For both f.c.c, and b.c.c, the 
CSL and the DSCL have to be face-centred or body-centred respectively. Methods are described for all 
three cases to determine explicitly the CSL, the DSCL and the planar density of coincidence sites. A 
table is given for R, the CSL's and the DSCL's up to Z = 49. This study is of importance for the investiga- 
tion of grain boundaries in cubic crystals. 

Introduction 

Coincidence-site lattices are of importance in connex- 
ion with the study of grain boundaries. Although grain 
boundaries are two-dimensional features it is useful to 
investigate three-dimensional configurations of the in- 
terpenetrating point lattices numbers 1 and 2 and 
later interpret the grain boundary as a two-dimen- 
sional section through this configuration. For con- 
venience we place the lattices so that they have at least 
one point in common, which is called a coincidence 
site, and choose that point as origin. If there exist more 
coincidence sites, then owing to the periodicity of the 
two crystal lattices, there exists a whole coincidence- 
site lattice, (CS lattice or CSL). The CSL is the finest 
common sublattice of the crystal lattices 1 and 2. 

The existence of a CSL indicates that the pattern 
formed by the lattice points of both crystal lattices is 
periodic with the periodicity of the CSL. Other peri- 
odic patterns with the same period but without con- 
taining a CSL can be produced by translation of lattice 
2 with respect to crystal 1 (Bollmann, 1970). 

For the structure of grain boundaries it is of im- 
portance that, of all the patterns obtained by transla- 
tion, one has the lowest energy, and that crystals tend 
to conserve that pattern, which may or may not be 
the one with the CSL. Hence, when talking of CSL's 
we have to understand these primarily as periods of 
patterns, and the CSL's are convenient representa- 
tions of these periods. 

In addition to the CSL we shall consider the coarsest 
lattice that contains crystal lattice 1 and 2 as sublat- 
tices. This is called the 'complete pattern-shift lattice' 
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or DSC lattice [D stands for displacement of lattice 2 
(lattice 1 is always considered as fixed), S for shift of 
the pattern and C for complete]. The DSC lattice is 
composed of all the translations of lattice 2 that leave 
the structure of the (periodic) pattern unchanged. 

A slight deviation in the relative orientation of the 
two crystals away from a coincidence orientation pro- 
duces a network of so called 'secondary dislocations', 
which allow the crystal to conserve the minimum- 
energy pattern over most of the boundary surface. 
The existence of such networks was shown among 
others by Schober & Balluffi (1970, 1971) and Boll- 
mann, Michaut & Sainfort (1972). Warrington & Boll- 
mann (1972) have shown that secondary dislocation 
networks can be calculated by exactly the same proce- 
dure as low-angle boundaries, except that the crystal 
lattices have to be replaced by DSC lattices and that 
the angular deviation of the crystal lattices has to be 
replaced by the deviation from the coincidence orienta- 
tion. The shortest translation vectors of the DSC lat- 
tice are the Burgers vectors of the secondary disloca- 
tions. 

In this paper, we shall consider only the case that 
lattice 1 has cubic symmetry. The reason is that for 
cubic symmetry there are a particularly large number 
of rotations that lead to a large density of coincidence 
sites. 

In general, it is expected that a high-angle interface 
is favoured energetically if the coincidence sites are 
dense in the plane of the interface. One reason for us 
to look at the arrangement of coincidence points in 
three-dimensional space and not just in a given plane 
is that the spatial arrangement for a given rotation 
allows us to recognize at once all the planes with a 
high density of coincidence sites. This is important be- 
cause the interface between two grains may not be 
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planar. In the case of a cubic lattice 1, the coincidence 
sites form a three-dimensional lattice if they do not 
all lie on a straight line. Moreover, the area A of a 
primitive cell of the sublattice of the CSL in a given 
plane can be small only if the volume V of a primitive 
cell of the whole CSL is small too. [It can be shown 
that a V < A  z for a primitive cubic (p.c.) lattice with 
lattice constant a.] 

We give here a few indications on the historical de- 
velopment of the coincidence concept in connexion with 
grain boundaries. The coincidence concept was ap- 
parently first noted by Friedel (1964) with respect to 
twin orientations. A number of theoretical investiga- 
tions of the properties of coincidence-site lattices were 
subsequently made (Brandon, Ralph, Ranganathan & 
Wald, 1964; Ranganathan, 1966; Brandon, 1966; Bish- 
op & Chalmers, 1968; Tu, 1971; Pumphrey & Bow- 
kett, 1971; Fortes, 1972; Woirgard & de Fouquet, 
1972; Santoro & Mighell, 1973). Experimental evi- 
dence that a grain boundary in coincidence orientation 
can be a local minimum of energy has been given by 
Schober & Balluffi (1970, 1971) and by Chaudhari & 
Matthews (1970, 1971). 

We divide our paper into two parts. Part I uses 
elementary number-theoretical methods, which are 
convenient for deriving general results about the CS 
and DSC lattices. They also permit the explicit calcula- 
tion of these lattices. 

Part II describes the procedure for calculating the 
CSL and the DSCL based on the 0-lattice theory by 
methods of matrix calculation for the p.c., f.c.c, and 
b.c.c, lattices. It also shows the method for calculat- 
ing the density of coincidence sites on a given plane. 
At the end is given a table which contains the CSL's 
and DSCL's for values of 27 up to 49. 

PART I 

1.1 The rotation matrix 

We choose a coordinate system with axes parallel to 
the edges of a standard cubic unit cell of lattice 1 and 
we choose the length of an edge as length unit. Follow- 
ing Warrington & Bufalini (1971) we consider rota- 
tions that, in our coordinate system, are described by 
a matrix R with rational matrix elements. We can write 

l [a~  a12 al3] 
R =  --N |a2t a22 a23~ (1-1) 

\ a a l  a32 a33/ 

such that there is no integral factor common to the 
positive integer N and the nine integers a~j. Since R 
is an orthogonal matrix, we have 

3 3 

x~, aikafl~=N26i J a n d  ~ aklakm=N2t~tm, (1-2) 
k=l k= l  

where 6~j= 1 if i= j ,  6~j=0 otherwise. The equations 
(1-2) imply a~l+ 2 2 _ 2 ai2 + a i3-  N for i=  1, 2 and 3. a~l + 

2 2 a~ + at~ is a number of the form 4n + k~, where n is an 

integer and k~ the number of odd integers among a~, 
a~2,a~a, i.e. k~=0, 1, 2, or 3. If N is even, then N 2 is 
a multiple of 4 and N 2 =4n +kt  implies k~ =0  for i=  
1, 2, and 3. However, according to our convention, N 
and the nine numbers a~j cannot all be even. We con- 
clude that N is odd. 

The angle 0 of the rotation described by the matrix 
R is determined by the trace t of R 

t = N - ~ ( a n  +a22+a33)=2 cos 0+  1 . (1-3) 

The rotation axis points in the direction of the vector 
c = {a32- a23, a~3- aa~, a21 - a~2}. The angle of rotation 
lies between 0 and 180 ° and forms a right-hand screw 
with respect to c. 

1.2 Notation and summary of part I 

We shall use A to refer to a lattice. The superscripts 
p, f and b distinguish between primitive cubic (p.o.), 
face-centred cubic (f.c.c.), and body-centred cubic 
(b.c.c.) lattices; the subscripts 1, 2, C and D distin- 
guish between lattice 1, lattice 2, the CSL, and the 
DSCL. By V we denote the volume of a primitive cell 
of A. Notice that we have chosen a coordinate system 
such that Vf  1, s _ l  = V1- -~ ,  V~=½. By G we denote the 
group of translation vectors that leave the lattice A 
invariant: by a basis for G we understand a set of three 
translation vectors el, e2, and e3 such that each vector 
in G can be written as a linear combination with in- 
tegral coefficients of el, e2, and e3. The matrix of which 
the ith column gives the components of e~ will be 
called a basis matrix and denoted by [el, e2, e3]. 

A central role in our paper is played by the follow- 
ing theorem, where N is the denominator introduced 
in the expression (1-1) for R. 

Theorem 1 

V ~ = N V f  . (1-4) 

The ratio Vc/V1 is usually called X in the literature. 
The proof that S =  N if lattice 1 is p.c. is given in the 
Appendix because it requires mathematical tools that 
will not be familiar to every reader. We have written 
the Appendix sufficiently self-contained for it to be 
read before § 1.3 and the following sections, where 
Theorem 1 will be taken for granted. In § 1.3 we shall 
show that V c = N V ~  also if lattice 1 is f.c.c, or b.c.c., 
i.e. Z = N for all three types of cubic lattice. § 1.4 con- 
tains the proof that V o = N - 1 V I  in all three cases and 
that Af: and A$ are reciprocal lattices. In § 1.5 we shall 
determine Ag: explicitly by giving a basis for this lat- 
tice. Once a basis for Af: is known, it is easy to find 
bases for the other CSL and for the DSC lattices. The 
procedures are described in §§ 1.3 and 1.4 as indicated 
in Fig. 1. 

1.3 The coincidence-site lattice Ac 

v ~ Gc (i.e. v is a vector in the group Gc) if and only 
if v s G 1 and v ~ G z. The condition v ~ G 2 is equivalent 
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to R- iv  ~ G1. Therefore we obtain the result 

v~Gc if and only if v~G1 and R - l v ~ G 1 ,  

which will repeatedly be used in the sequel. 

1.3.1 Properties of A~ 
In this subsection we shall discuss properties of A g. 

that we shall need to compare A~: with ASc and A~. 
G~ contains vectors with all three components even, 

e.g., {0,0,0}. They form a subgroup H of G~. If Gg. 
contains vectors of type (d, e, e}, i.e. with the first com- 
ponent odd and the other two components even, then 
these vectors form a coset of the subgroup H of G~. 
[This can be seen as follows: let u ,v~  G~, u of type 
{d, e, e} then u -  v e H if and only if v is of type {d, e, e}.] 
In this way one finds that there can be at most eight 
cosets of the subgroup H of Gg., which correspond to 
the vectors of type 

(i) (!) (i) (i) (!) (!) • ( 1 - 5 )  

The number of cosets of the subgroup H of G equals 
the number of elements in the factor group G/H, called 
ord (G/H). These group-theoretical notions have the 
following interpretation in terms of lattices• Let A be 
the lattice connected with G. Each coset corresponds 
to a sublattice of A with H as the group of its trans- 
lation vectors. The sublattices of A connected with 
two different cosets are related by a translation; 
ord (G/H) equals the number of superimposed sublat- 
tices that make up A. 

We have proved ord (Gg/H) < 8. Next we shall show 
ord (G~/H)>_ 8, so that we can conclude that Gg. in 
fact contains elements of all the eight types distin- 
guished in (1-5). The volume of a primitive cell of the 
lattice determined by H is a multiple of 8 whereas V~. 
is an odd integer because V~.=N by Theorem 1. It 
follows that ord (Gg/H) is a multiple of eight• 

Consider a basis el,e2,e 3 of Gg.. Every vector in G~ 
has the form 21e~+22ez+2ae3, where the 2ts are in- 
tegers. 21el + ,~2e2 q- ,~3e3 and 1-/lel q- f12e2 -I- flze 3 are of the 
same type if 2~- /4  is even for i =  1, 2, and 3. Therefore, 
the eight vectors we obtain if we let each of the co- 
efficients 2i take the values 0 or 1, contain representa- 
tives of every type of vector that appears in Gg.. Since 
G~. contains vectors of all the eight types enumerated 
in (1-5), the eight vectors constructed must all have 
different types. The determinant of the basis matrix 
[el, e2, e3] determines Vg., det [e~, e2, e3] = ___ N. Three vec- 
tors t"1, t"2, and fa in G~: form a basis of G~. if and only 
if there exists a 3 × 3 matrix U with integral elements 
and determinant + 1 such that [t"1, t"2,t"3] = [% e2, e3]. U. 

Vectors with integral components will be called of 
class k with k being the number of the odd components• 
We have to distinguish four classes: 

The 

/)2_{_ 2 2 
V 2 --[- V3, 

class contains the type 
0 {e,e,e} 
1 {d,e,e), {e,d,e), {e,e,d} 
2 {e,d,d}, {d,e,d}, {d,d,e} 
3 {d,d,d). 

the square of the length of a vector v of 
class k has the form 4n + k, n an integer• Since a rota- 
tion leaves the length unchanged, we conclude that 
for a vector v ~ G~., v and R- iv  belong to the same class• 

1.3.2 How big are V Sc and V~c? 
G~, the group that corresponds to a b.c.c, lattice 1, 

consists of G~ and of the vectors u with the property 
that 2u is a vector in Gf of class 3. The length squared 
of u has the form n + ¼, n an integer, whereas the square 
of the length of a vector in G~ is integral. G{ consists 
of G~ and of the vectors v such that 2v is a vector in 
Gf of class 2. The length squared of v is n+½. 

Only f.c.c, lattices will be discussed in detail be- 
cause b.c.c, lattices can be treated similarly• Choose in 
Gg. a vector of type {e,d,d}, one of type {d,e,d}, and 
one of type {d,d,e} and call them ul, u2, and u3 re- 
spectively. Let us write u0 for the vector {0,0,0}. The 
vectors ½u~, i=0 ,1 ,2 ,3  lie in Gc s. Since GSc is a group, 
it follows that every vector v of the form v=½ut +a ,  
where i=0 ,  1, 2 or 3 and a ~ G~, lies in GSc . We want 
to show that the converse is true, too. Take b e GcC 
b-½u~ e GSc for i =  0, 1,2, 3. We can choose i such that 
the vector e = b - ½ u t  lies in G~. R - l e  lies in G~ and 
has the same length as c. It follows that R-~e ~ G~, 
i.e. e ~ G~. This finishes the proof that b ~ GSc has the 
form b=½u~+e, where i=0 ,  1, 2, or 3 and e~  Gg.. 
There are four cosets of the subgroup Gg. of Gc s, each 

V c - k V c  containing one of the vectors u~. Therefore, Y-  P 
i P=NV~. =4NV1 
Similarly one finds Vbc=½V~=NV~. We conclude 

that S, the ratio Vc/1/'1, satisfies _r= N for all the three 
kinds of cubic lattice. 

1.3.3 Explicit determination of ASc and A~ 
In § 1.5 it will be shown how to determine explicitly 

a basis el, e2,e3 for G~. Here we show how to change 
from a basis for Gg. to bases for G~ or Gc s. 

b.c.c. One of the eight yectors 21el + ).2e2 q- J.ae3, ,~ = 0 
or 1, is of type {d,d,d}. We call this vector u. Since 
only the vector of type {e, e, e} has all three 2{s equals 
to zero, it is possible to reorder the basis vectors, 
el, e2, e3 ~ e~, e~, e~ such that 21 = l• U, % e3 form a new 
basis of GS. ½u, e~,e~ are vectors in G~; they form a 
basis of G~c because det [½u, e~,e~]=½ det [u,e~,e~]= 
_+½N. 

f.c.c. Reorder the basis vectors, el, e2,e3 -+ e~,e;,e;, so 
that the vector v of type {e,d,d} has 21= 1. {v, e2,e;} 
form a basis for G~. Interchange e; and 6 ,  v,e;,e3--* 
v,e'2', e'a', if this is necessary in order that the vector w 
of type {d,e,d} has 22 = 1. v,w,e;' form a basis of Gg.; 
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½v,½w, e~' are vectors in G~c; they form a basis of Gc ~ 
because det i 1 [2v,~zw, e'3'] = + ¼N. 

1.4 The complete pattern-shift lattice Ao 

1•4.1 The volume 1Io of a primitive cell of A o 
In this subsection we shall work with a crystal co- 

ordinate system of lattice 1; i.e. the coordinate sys- 
tem we use will depend on whether lattice 1 is p.c., 
f.c.c, or b.c.c. We shall determine Vo simultaneously 
for all the three cases. We write the components 
{al, a2,a3} of a vector a e G 2 as ai=tliq-o¢i, where n i 
is an integer and 0 < e~ < 1 ( i= 1,2, 3). {ex, c~2, ~3} are 
called the reduced components of a. Vc = NV~ tells us 
that there are N cosets of the subgroup Gc of G2. Vec- 
tors in the same coset have the same reduced com- 
ponents; vectors in different cosets have different re- 
duced components. Hence, there are N different triples 
of reduced components. The group Go consists of all 
vectors that have reduced components equal to one 
of the N triples. We conclude that VD=N-~V~ in all 
three cases. 

1.4.2 Proof that A~ and Af~ are reciprocal lattices 
Let e~, e, and e3 be a basis for GS. 

, e ~ x %  , e 3 x e l  , e l x e 2  (1-6) 
e ~ -  N , e 2 -  N ' % -  N 

form a basis of  the group GR that corresponds to the 
reciprocal lattice AR of A~. Let ~ denote the set of 
all integers. We want to show that GR consists of all 
vectors f such that the scalar product f .  v ~ ~ for all 
v E G~. We do this by proving the following equivalent 
statement: G~ consists of all vectors f with f .  e~ e ~e 
for i =  1,2, 3. That  f .  e~ e ~e if f e GR is clear because 

ei .  e7 = c~¢s. (1-7) 

It remains to show that f e GR if f .  e~ ~ ~. for i =  1,2, 3. 
But this is true because for any vector f: 

f = ( f .  e~)e~' + ( f .  e2)e~ + ( f .  ea)e~. (1-8) 

In order to prove that Gg is contained in GR we only 
have to show that u .  v s ~ if n e G~ and v e Gg. We 
can write v=v t+v2 ,  where v~e G[', i=1 ,2 ,  u .  v=  
u .  v~+u .  v2. To complete the proof  we notice u .  vt 

~ because u, vt ~ G~ and u .  v2 ~ ~e because u, v2 
G~. Since V~ . V~= 1, we have V~= Vg, so G5 must 
coincide with Ge, which proves that Ag and Ag are 
reciprocal lattices• 

Notice that the relations (1.6) allow us to determine 
a basis for A 5 once we know a basis el, e2, e3 for A ~" 
if M:  = [ei, e2,e3] then [e~,e 2 ,Ca] =(M-X)r :  = M *  ( " =  
stands for 'is by definition equal to'). M* has the form 
N-~B, where B is a matrix with integral elements. 
Since det M* = + N -~ we have det B = + N 2. 

1.4.3 The lattices A £ and A~ 
Let G be the smal les t  group that  contains 
• 1 2  , - 1 2 2  ul =(0,~,2},  u2.={½,0, i ) ,  u3:={z,2 ,0) ;  and G~,. Ob- 

viously, G is contained in G£. There are four cosets of 
the subgroup Gg of G, each containing one of the vec- 
tors ui, i =  0,1,2, 3, where u0 = {0, 0, 0}. Since G and GD 
both determine lattices the volume of a primitive cell 
of which is ¼. Vg, it follows that G =  Gg. 

Similarly one shows that G~ is the smallest group 
Yi2 1~ containing u: = 1.2, 2 , i f  and Gg. 

If fl,fz, f3 form a basis for Gg then Nf~,Nf2,Nf3 are 
vectors with integral components that span a volume 
N 2. Since N 2 is odd we can conclude, similarly as in 
§ 1.3.1, that all the eight types (1-5) are represented 
among the eight vectors N(2~fx + ;~2f2 + 23f3), 2i = 0 or 1. 
The procedure described in § 1.3.3 allows us to go 
over from the basis f~,f2,f3 

(1) to a basis u,f; ,f ;  such that Nn has type {d,d,d}. 
½u, f;,f;  is a basis for Gbo; 

(2) to a basis v, w, t"3' such that Nv has type {e, d, d} 
and Nw type {d,e,d}. ½v,½w, f3' is a basis for G£. 

1.5 An algorithm to determine A~ 

We denote the largest common (integral) divisor of 
integers al . . . .  ,a,  by ( a i , . . . , a n ) .  Define oq:=(all ,  a12, 
N), 0¢2:= (a21, a22, N), where the a~ s are the matrix ele- 
ments of N .  R. Lemma 2 in the Appendix states that 
(el, 0¢2)= 1. Let m~ be the largest (integral) factor of N 
such that (m~, cq)= 1. Define m2 = N/m~. It follows that 
(ml,  m2)=(m2,o~2) -= 1. Define fil:=(ml,a11) and t ~2 . '=  

(m2, a2~). Notice that (ill, a12) = (fi2, a22) = 1. 
Let a--b state that a - b  is an (integral) multiple of 

n 
n. In the Appendix we prove the following result: if v 
is a vector with integral components then Rv lies in 
Gg. if and only if 

vza~l + v2a12 -t- v3a13 ~ 0 
ml 

and (1-9) 
vla21 + v2a22 -t- v3a23 ~ 0 . 

m2 

This result allows us to determine explicitly a basis 
Rx, Ry, Rz of G~ such that x ,y ,z  has the form 

x~ y~ zz ) 
0 Y2 z2 
0 0 1 . 

R 

1.5 

1.4 A; reciprocity ~ A; 

11.31 centring 11.31 
A~ A~ A; Ag 

Fig. 1. The explicit calculation of the CS and DSC lattices. 
(The numbers refer to the sections of Part I where the pro- 
cedure is described.) 
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First we shall describe an algorithm that yields values 
for x~,y~,y2,z~,z2 and afterwards we shall show that 
the vectors x, y and z so determined satisfy (1-9). Define 
71" = m i / 6 i  and 72" = m2/62. By x +-- a x  + b = 0 we define 

m 
x to be the smallest non-negative solution of the con- 
gruence a x  + b = O. 

m 

N 
xi--  6i62 

Y2 = 6162 

Yi = 111 + 71112, 
where 

111 <--- 11iall + y2a12=--O , 112<-- (11i + 71112)a21+ y2a22 =O 
FHl m2 

Z2 = C1 + ~1C2, 
where 

-~-- (lal2 + al3 - 0 ,  (2 +-" (~'i + ~1~2)a22 + a23 -------- 0 
61 62 

ZI = ~1 + 71~2, (1-10)  
where 

~l +- ~lall + z 2 a l 2 + a l 3 = O ,  
ml 

~2 +-- (~l + 7i~2)a21 + z2a22 + a23 - 0 .  
m2 

A basic theorem of number theory is:* the con- 
gruence a x + b - O  has no integral solution x i fb  is not 

m 

a multiple of g : =  (a, m); if b is a multiple of g, the con- 
gruence has exactly one integral solution that satisfies 
O < _ x < m / g .  This theorem shows that 11, ~'~, and ~,  
i =  1, 2 exist and satisfy 

0-<11~<7~, 0 < ( ~ < 6 ~ ,  and 0 < ~ i < 7 ~ .  

11, (~ and ~ can be found by hand or computer by 
trying consecutively for the unknown number the val- 
ues 0, 1 ,2 , . . .  until a solution has been found. The con- 
gruences (1-10) ensure that x, y and z satisfy (1-9). It 
follows that the vectors Rx, Ry and Rz lie in G3. They 
form a basis because det [Rx, Ry, Rz] = det [x, y, z] = 
X l  • Y2 • 1 = N. 

If ( a ~ , N ) =  1, which is fulfilled in the majority of 
examples in Table 1, our algorithm simplifies con- 
siderably: 

x l = N  

Y2 = 1 , Y l  +- Ylall + a12 = 0 
N 

Z 2 = 0 ,  z l + - z i a l t + a l 3 = 0 .  
N 

We give an example: 

R = ~  12 
- 4 1 2  

y i = 1 0 + - - 1 2 y i - 3 - 0 ,  z l = 4 + - - 1 2 z i + 4 = 0 .  
13 13 

A basis B for G~ is therefore given by 

( 1 2 - 3  i ) ( l i  10 ! )  ( 1 i 9 i t  B=-~3 4 1 2 -  1 = 4 
- 3  4 1 0 - - 2  . 

Table 1 gives for our example 
where 

the basis matrix B .  U, 

-- 1 - - 2  ! )  
U =  1 2 - 

1 1 . 

Notice that B and B.  U determine the same lattice be- 
cause U has integral elements and determinant 1 .  

P A R T  II 

2.1 Introduct ion  to P a r t  II 

While the terms of group theory and number theory 
are more appropriate for proofs of the essential math- 
ematical relations, the methods of matrix calculations 
are often more convenient for the numerical proce- 
dures, especially in connexion with calculations on 
grain-boundary structures by means of a computer. 

In § 2.2 the 0-lattice method for determining the lat- 
tices A g., Abc and ASc in either orthonormal coordinates 
of Af  or in the crystal coordinates of A~ and A f is 
developed. § 2.3 describes the corresponding lattices 
AS, A~ and A£ and their relation to the CSL's. In 
§ 2.4 the body and face centring of A5 and A~: is ex- 
plained. § 2.5 gives a method to determine the planar 
density of coincidence sites and § 2.6 gives a comment 
on Table 1. The numerical data in the Table have been 
calculated by the 0-lattice method on a time-sharing 
computer IBM/370. 

2.2 0-Lat t i c e  m e t h o d  for  ca lcu la t ing  the  C S L ' s  
A~, A~, and Ac s 

Since the 0-lattice is defined as the lattice of all the 
coincidences of 'equivalent' positions (positions with 
the same coordinates within the interpenetrating unit 
cells), the CSL which consists of the coincidences of 
lattice points is containedas a sublattice in every 0-lat- 
tice for a given relative orientation of the two crystal 
lattices. Hence we can calculate a convenient 0-lattice 
and compose the unit cell of the CSL from 0-lattice 
unit cells. 

The method for calculating the 0-lattice is given in 
detail by Bollmann (1970). First, a point-to-point rela- 
tion between the two lattices has to be formulated. 

X <2) = A x  <i). (2-1) 

By the choice of the transformation A the 'equivalence' 
of points is defined. The 0-lattice is given by the solu- 
tion of the equation: 

* Cf., e.g., p. 11 of Dickson (i 957). (I-- A -  1)x(°) : = Tx (°) = b (L); (2-2) 
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I = identity, unit transformation; 
b ~L) are lattice vectors of the b-lattice which is composed 

of all the translation vectors of lattice 1 and which 
is in structure and orientation identical with lattice 
I but has another meaning. Equation (2-2) can be 
understood as an imaging relation between the 
b-lattice and the interpenetrating crystal lattices. 

In all the numerical procedures the following points 
have to be stated beforehand: 

1. The crystal lattice to be studied [primitive cubic 
(p.c.), body-centred cubic (b.c.c.) or face-centred cubic 
(f.c.c.)]. 

2. The coordinate system in which the results are to 
be represented, the orthonormal system of the p.c. unit 
of crystal 1, or a crystal coordinate system of the b.c.c. 
or f.c.c, structure (e.g. rhombohedral for f.c.c.). 

We describe the procedure in crystal coordinates 
marked by (') which also includes the p.c. case in its 
'crystal coordinate system'. The advantage of the crys- 
tal coordinate system is that the matrix C', which con- 
tains the unit vectors of the CSL as column vectors, 
always consists of integral coefficients. The following 
expressions have to be calculated: 

( I -  A ' - I ) :  = T' = ( I -  U S -  IR-1S) (2-3) 

n 
det (T ' )=  -~- (2-4) 

X '~°~ = T  '-1 . (2-5) 

Transformed to orthonormal coordinates (e.g. for plot- 
ting the results)" 

X ~°) ST ' -1 ;  (2-6) 

R is the rotation matrix of the coincidence orienta- 
tion under investigation expressed in the  ortho- 
normal coordinate system of a p.c. lattice 1 [equa- 
tion (1-1)]. 

S is the structure matrix which contains as column 
vectors the unit vectors of the crystal coordinate 
system expressed in the orthonormal coordinates 
of the p.c. lattice 1. In the p.c. structure S = I  
(I = identity = unit matrix). 

n is an integral number, which indicates the number 
of 0-lattice units per CSL unit. 

X (°) is represented here as a matrix, the three column 
vectors of which are the unit vectors of the 0-lat- 
tice. This is possible if rank (T)= 3, in which case 
the 0-lattice is a point lattice. 
According to Theorem 1, the value of S is equal to 
the number N in the rotation matrix. 

U is a unimodular transformation which is needed in 
order to obtain det (T') ¢ 0. A unimodular transfor- 
mation has the property det (U)=  + 1 and in our 
case has integral coefficients. It redefines the units 
of the coordinate system usually by a shear trans- 
formation with a component in the direction of the 
axis of rotation, and so images lattice 1 onto itself. 

U is needed for the following reason: if the relation 
A between the two crystal lattices is given by the rota- 

tion R alone, then rank ( T ' ) = 2  and the 0-lattice be- 
comes a line-lattice. Hence the coincidence sites lie on 
parallel lines and a basis of the CSL has to be found 
from these points. This task becomes easier if the 
0-lattice is a point lattice, i.e. if rank (T ' )=  3 and this 
is achieved by a convenient choice of U. 

The next step is the determination of a basis matrix 
C' for the CSL from X 't°~ ( C ' =  CSL-matrix in crystal 
coordinates). As already mentioned, the coefficients 
of C are integers. C' is determined in two steps: first 
by operating on the columns of X "°~ such that its 
determinant ( =  S/n) remains unchanged* and that two 
columns become integers and then, in the second step, 
the remaining column can be multiplied by n whereby 
the determinant becomes -r. t  The column vectors of 
the matrix thus determined C' are a basis of the CSL 
in crystal coordinates. 

By further operating on the column vectors of C' 
the unit cell of the CSL can be reshaped such that its 
form is most cube-like and so its vectors acquire the 
shortest length. The C p matrices in the Table (CSL 
column) are reshaped such that the first unit vector 
has a component in the direction of the axis of rota- 
tion and in most cases lies in this axis, and the two 
other unit vectors are, as far as possible, perpendicular 
to it. The sequence of unit vectors is always chosen 
right-handed, i.e. the determinant of C p is positive. 

It is to be mentioned that by the 0-lattice method 
the matrices C b and C e can be determined directly with- 
out passing through C p. 

2.2.1 Example for  the calculation o f  the matrix C p 

Data from Table 1 

~r= 13 ([111]-axis 0=27.79°), p.c. lattice 

R = 1-~aa 4 12 
- 3  4 1 2  . 

R - t =  R r as R is an orthogonal transformation. 
Chosen U: 

U =  1 
1 . 

* The determinant of a matrix (i.e. the volume given by the 
three column vectors) is conserved if multiples of other 
column vectors are added to a column vector. The determinant 
changes its sign (change from right-hand to left-hand system) 
if one column vector changes its sign or if the sequence of two 
column vectors is inverted. The determinant increases by a 
factor n if one column vector is multiplied by n. All these 
operations correspond geometrically to new choices of unit 
cells within a lattice. 

With respect to the value of the determinant, the same 
operations could be carried out with row vectors, the structure 
of the lattice, however, would then be changed. 

I" It may be that n [from det (T')= n/27] can be expressed as 
a product of several factors. In this case X C°~ may be such that 
different column vectors have to be multiplied by different 
factors in order to obtain a unit cell of the CSL (with integer 
coefficients and the determinant L'). 
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For the centred lattices S can be chosen: 

Sb= 2 ½ and SS= 

• 

T ' =  i~. 3 3 1 
1 9 

X (°) = 0 - 
- 1  - 1  

½ 
0 

Since n = 2  this 0-lattice unit is half a CSL unit. In 
order to obtain a complete CSL unit we add the third 
column to the first and then double the third column. 

C p = 

(1 
1 

• 1 
0 

- 1  i) 
This form can be reshaped to the form given in 
Table 1. 

2.3 Determination of the D S C  lattice 

As shown in § 1.4.2 the DSCL for the p.c. structure is 
the reciprocal lattice of the CSL. D p matrix with the unit 
vectors of the DSCL as column vectors can be deter- 
mined by 

DP = [(CP)-~] r , (2-7) 
T=  transpose. 
There is also a direct method for determining D p, D b 
and D e described by Warrington & Bollmann (1972). 
(In that paper the D-matrix is called D(Z-sc).) 

2.4 Body centring and face centring 

Since in Table 1 only the C p and S .  D p matrices are 
given we describe here the transformation to the C b, 
D b and C y, D e matrices. As was shown in § 1.3.1 
there are four classes of column vectors of the matrices 
C p and L'. D p with respect to the number of odd and 
even components. A vector of class 0 halved leads to 
lattice points of Af (integer coordinates), one of class 1 
halved leads tO centres of cube edges, one of class 2 
to face centres, and a vector of class 3 to body centres. 

Hence, for face centring two columns of class 2 
have to be halved and for body centring one column 
of class 3. The form in which the matrices are given in 
Table 1 does not always contain the needed class of 
columns. Hence, such columns have to be made of 
combinations of columns in the matrix, which leave 
the determinant unchanged, and then the correspond- 
ing new columns have to be halved. This can be done 
by constructing a matrix Z b or Z y such that 

c ~ = c , z  ~ ( c f =  c ~ z z )  (2-8)  

and correspondingly 

L'. D b = S .  DPZ b (L'. Df=.~v'. npzf). (2-9) 

The Z matrices depend on the odd-even structure of 
the attributed C or Z'. D matrices. 

We show the procedure on the example Z = 13 rota- 
tion around the [111] axis by 27.79 ° 

C p= 1 - ~r. D p= - 1 - 
2 4 . 

The odd-even structures are 

C p = d •.  D p = d 
e e . 

For body centring C we have to halve the first column 
and leave the two other columns unchanged. Hence 
Z b here becomes 

Z~= 1 
0 , . 

The determinant of Z b has to be ½, as the volume of 
the C p unit cell is halved by body centring. For the 
face centring of C p, first two columns with two odd 
components have to be produced before they can be 
halved. This can be done in the following way, 

z~= 
0 . 

The columns of Zc y show that the first column of C y 
equals the first column of C p, the second column of C y 
is the first and the second column of C p added and 
halved, and correspondingly the third column. The 
determinant of Z e has to be ¼ since by face centring 
the volume of C p is divided by 4. The corresponding Z 
matrices for ~r. D are: 

l °i) Z~= 1 and Z ~ =  
\½ o o . 

To summarize the construction of the Z matrix, the 
ith column in the Z matrix refers to the ith column 
of the new, centred matrix, and the coefficients in that 
column, in their respective row positions, refer to the 
columns of the old, non-centred matrix, which have 
to be multiplied by these coefficients and added in 
order to obtain the new column. 

* The calculation rules of the odd-even algebra obviously 
are: 

+ d e 
d e d 
e d e 

x d e 
d d e 
e e e 
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The centred matrices then become 

Cb= ~ 1 -  
2 (; 3 

I ) ~ = ~  ~ - I  - 
4 

C f = 1 - 2  

Da" = ~-x~ -½ - 
2 ~ .  

The thus-centred unit cells are still represented in the 
orthonormal coordinate system of Af. 

2 . 5  P l a n a r  d e n s i t y  o f  c o i n c i d e n c e  s i t e s  

For the study of grain boundaries it is of importance 
to know the density of coincidence sites within the 
boundary surface, as only the density in this surface 
may have physical significance, in contrast to the den- 
sity in space. We calculate the planar density assum- 
ing that a curved or faceted surface can be composed 
of planar parts. 

Suppose the indices of a plane (h~ (~ub)) are given in 
the cubic system and we need to know the ratios: 
number of atomic sites per coincidence site and num- 
ber of coincidences sites per unit surface. The crystal 
may have a p.c., b.c.c, or f.c.c, lattice. It is convenient 
for this purpose to express the vector h~ (~b) in the co- 
ordinate system of the reciprocal coincidence-site lat- 
tice as well as in the reciprocal crystal system. The 
length of a vector in a reciprocal lattice [with no com- 
mon factor of its (integer) coordinates] is the inverse 
of the layer spacing of the corresponding crystal lattice 
planes and CSL planes respectively. The volume per 
lattice point is given by the volume of the unit cell 
(determinant of matrices S or C). From here the sur- 
face per lattice point in the chosen boundary plane is 
determined. The coordinate transformations needed 
are shown in Fig. 2. 

The procedure is the following: 
The vector h (~ub) is transformed into the coordinate 

system of the reciprocal CSL (r.  CSL) 

h (r.CsL) = CTh  (cub) (2-10) 

and correspondingly to the reciprocal crystal system 
(r.  crst) (e.g.  rhombohedral for f.c.c.). 

The length of the vector h' is given by means of the 
metric tensor G by" 

[h,(=)[ = [(h,(=))rG(=)h,(=)] 1/2 (2-13) 

with (~) either (r .  CSL) or (r.  crst) and 

G t r ' c s L ) = ( C T C ) - l = C - l ( c r )  -1 (2-14) 

and 
Gtr.erst) = (STS)- 1 ---- S -  l(ST) -1 . (2-15) 

The volume per coincidence site is given by the layer 
spacing d of the CSL times the surfacefper coincidence 
site: 

1 
d .  f = [h7[ . f = v  . (2-16) 

A similar formula applies to the density of lattice sites. 
Since the volume v equals [C], the determinant of C, 
or [S[ respectively, the ratio (in the plane h) of the num- 
ber of crystal-lattice points per coincidence site is 
given by 

///<ers`) ICI. Ih'<"csL)l 
- - ( 2 - 1 7  

n (csL) ISl. Ih'(r'crst)[ 

and the number of coincidence sites per unit surface 
(A 2) 

1 
H(CSL)(/~k -2)  = (2-18) 

a 2 • ICI. Ih't~'CSL)l 

with a the lattice constant of the cubic system in A. 
The ratio n(~rm/n <csL) can acquire the value 2" or one 

of its factors down to the value 1. 
As an example it can be shown that the Z'= 3 case, 

the (111) plane, is greatly preferred in the f.c.c, struc- 
ture (twin boundary) as there n(~s ' ) /n(CSL)=l  and 
ntCSL)/a 2 = 2 . 3 1 / a  2. 

2 .6  C o m m e n t  o n  T a b l e  1 

The columns of Table 1 give the following informa- 
tion: 

1. ~r value, axis of rotation, angle of rotation. 
2. 2" times the rotation matrix. 
3. Matrix that determines the coincidence site lat- 

tice A~ (column vectors are the unit vectors of the 
CSL). 

• h<,.crst) = STh(eub). (2-1 1) 

In general the resulting representations h <r'csL) and 
h <"'crst) do not have integer coordinates. Hence they 
have to be multiplied by a factor such that their coor- 
dinates become integers with no common factor. The 
thus-corrected h vectors will be marked by a prime. 
The corresponding layer spacing in the CSL and in 
the crystal then is: 

1 1 
- -  d (crst) - . (2-12) d (csL) ih,tr.CSL)[ Ih'(r.crs,) I 

I 
G (crst)_ sTs S-' I 

[ . . . . . .  yst. ] - II cryst. I~  I cubic(,) I 

I coinc, t2) ] [ rec. coinc. ] G(CS~')-CTC 
I 

Fig.2. Representa t ion  of  the coord ina te  t rans format ions  
needed  for the de terminat ion  of  the planar  density of  coin- 
cidence sites. 
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4. Matrix that determines X times the DSC lattice 
Aft. 

5. A number that gives the Bravais class of A~: and 

oo 

3 2 -i 2 1 1 -1 1 1 -i i 

[111] 2 2-i ~ o i i i 2 

50.00 ° -i 2 2 i -i o i -2  -i 

5 5 o o 1 o o 5 o o 3 

[10o]  0 ~ -3  0 1 -2  o i -2  

36 .86  ° 0 3 4 0 2 1 O 2 1 

7_ 6 -2  3 1 2 -1 2 2 -1 2 

[111] 3 6 -2 1 0 2 i 1 3 

38.21 ° i-2 3 6 i - 1  o 4 -3 -2  

_9 8 i 4 i -2 o 5 -2 1 5 

[110]  1 8 -4  1 2 -1  ~ 2 - z  

38.94 ° -4 ~ 7 o i 2 2 1 4 

11 9 2 6 i i i 7 i 3 5 l  

[110] 2 9 -8 i -1  -2 4 i - 1  -3  

50.47 ° -8  6 7 o 3 -1 -1 3 -2 

1-5 13 O 0 1 O O 13 0 0 3 I 

[i00] O 12 -5 O 3 2 0 3 2 

22.61 ° o 5 12 o -2 3 o -2 3 

13 12 -3  4 i -2  2 6 -3  1 2 I 

[111]  4 12 -3 1 i -2  6 -1  -4  

27.79 ° -3  4 12 1 2 l 2 4 3 

15 14 2 5 2 -i 0 6 -3  i 5 [ 

[210]  2 11 -10 1 2 O 3 6 -2  

48-18 ° -S 10 10 O I 3 0 0 5 

1_77 17 o o i o o 17 o o 3 [ 

{ioo] o 15 -8 0 i 4 0 I 

28.07 ° o 8 15 o -4 1 o -4 1 

17 12 -1 12 2 -3 o 4 -3  2 5 I 

[221] 9 12 -e  2 2 -1  3 2 -7 

61.82 ° !-8 12 9 i 2 1 3 2 i0 

19 18 1 6 1 -3  1 g -3  i 5 I 

{ n o ]  i ze -5 i 3 o 1o 3 -1  

26.52 ° -6 6 17 o 1 3 3 1 6 l  L 

r 
19 15 -6 i0 I 3 -2 6 3 -2 2 

[111] 10 15 -6 i o 3 ~ 2 5 

48-82 ° -6 io 15 I -2 o 9 -5 -3  

Table 1. Coincident-site l a t t i c e s  

The explanation of  the Table is given in § 2.6. 

E 
~'ROT CSL I> DSCL BC [ h k l j  ~.ROT CSL ~, DSCL BC 

o 
II 

21 20 -4 5 i -3  2 7 -4 1 1 

[ m ]  s 20 -4  z ~ -3 , -~  -s  

21,78°; -4 6 20 1 2 1 7 5 4 

H 
i 21 19 -4 8 2 i o io i -w 5 

[211] 8 16 -11 0 -4 -i 2 -4 -5 

44.41 ° -4 13 16 -1 2 [-2 -i 2 -B 
H 

23 22 -3  6 3 i o 8 -1  3 7 

[311]  6 18  -13  0 3 1 -2  6 5 

40 .45  ° -3  14 18 -I -2  3 i -3  9 
'I 

2-5 25 o o i o o 25 o o 3 

[100] o 24 -7 o 4 o 4 3 

16.26 ° o 7 24 o -3  4 o -3  4 

H 5 2-5 20 o is 2 i -2  5 6 -5  7 

[331]  9 20 -12  1 2 3 1 8 4 

51.68 ° -12 15 16 2 -I I 7 -8 3 
II 

2"/ 25 2 lO i -2  1 15 -5  1 5 

[llO} 2 25 -i0 1 3 -1 11 5 -1  

31 .69  ° -10  10 23 0 1 5 -1 2 5 

27 26 2 7 2 -2  -1  11 -1  -3  7 

[21o]  2 23 -14 1 2 3 2 6 

35.43 ° -7 14 22 o -3  i -4 -7 6 

29 29 o o 1 o o 29 o o 3 

[ zoo ]  o 211-20 o s - ; '  o 5 -2  

43.60 ° O 20 21 o 2 5 ; o 2 5 

2-9 24 -3 16 i -1 -4 6 -7 -4 6 

[221]  11 24 -12 2 0 3 iO -2  3 

48.40 ° -12 16 21 -1 -2 2 -3 -11 3 

31 30 -5  5 I -4 2 9 -5 i 2 

[111] 6 30 -5  1 i -4  8 -1  -6  

17.90 ° -5  6 30 1 2 i 14 6 5 

3.. ! 27 6 14 1 2 -2  5 ii -2 7 

[320]  6 22 -21  3 -1  2 8 -I 3 

54.60 ° :-i~ 21 18 1 -i -3  2 -8 -7 

33 32 i 8 1 -4 i 16 -4 i 5 

[no] i 32 -3 1 4 o 17 4 -1 
20.05 ° -8  8 31 o i 4 -4  1 8 

t 
[hk l ]  ~.ROT CSL 
0 o 

33 32 -4  7 3 -1  - i  

h n ]  , 2~ 1 5  1 4 1 

33.56 ° -4  17 28 1 -1  2 

3-9 25 a 20 1 2 2 

[11o] o 26-20 i -2 -3 

58.99 ° -2o 2o 17 0 5 -2 

35 33 -6 io 2 -i i 

[211] i0 30 -15 1 i -5 

3 4 . 0 5 ° i  -6  17~ 30 1 2 3 

3 !  30 -i 18 i -2 -2 

[331]  10 30 -15 0 "~. : - 3  

43 .23  ° -18 18 26 2 i 1 

3.3.7 37 o o 1 o o 

[1oo] o 3 5 - 1 2  o 6 -1 

18.92 ° o 12 35 o 1 6 

37 36 3 8 3 2 

[3101 3 2 8 - 2 4  I - I  -2 

43.14 ° -8 2~ 27 0 4 -i 

28 -12 21 1 3 0 

[ i n ]  21 28 -12 1 -4 3 

SO.S7 ° -12 21 2e i o -4 

39 35 -1o 14 1 3 1 

[111] 14 35 -lO i -4 3 

32.20 ° -I0 14 35 1 1 -4 

39 34 -2 19 3 2 o 

[321J 14 2 9 - 2 2  2 -3 o 

50.13 ° -13 26 26 1 -1  -3  

4._! 41 o o i o o 

[iooi o 4o -9 o 5 4 

12.68 ° o g 4o o -4 5 i 

4_1 39 4 12 2 -1 -2 

[213] 4 331-24 1 2 2 

40.88 ° -12 2[+ 31 o -6 1 

4.1 32 9 24 i 4 -2  

[ n o l  9 3 2 - 2 4  i -4 1 

85.85 ° 1-24 24 23 0 -3 -4 

I 
• DSCL I BC 

9 i - i  -5 s 

~ 7 ~ 
-4 13 

19 2 5 

14 -2 -5 

-2 5 -4 

13 -8 1 5 

5 5 -5 

4 11 3 

7 -6 -8 5 

0 5 -5 

14 3 4 

37 o o 3 

0 6 - 1  

O 1 6 

0 1 4 7 

io -3  -12 

-2 8 -5 

15 7 ,, 2 1 

12 -4  3 

0 -3 -7 
] 

13 ? 5 1 

13 -5  

13 -2 -7 

I 
9 6 i 7 

B - e  5 

o o -13 
I 

41 o o 3 

o 5 4 

o -4 6 

14 -1  - 5 [  5 I 

13 2 12 

2 -6 5 

I 
19 4 -3  6 

22 -4 3 

-4 -3 -B 

Z 
[hkll 

e o 

43 

15.18 ° 

4-9 

[ n o ]  

27.91 ° 

4..2 

[332] 

68.77 ° 

~-5 

[3n] 

28.52 ° 

4j 

[221] 

36.87 ° 

4-5 

[221] 

53.13 ° 

47 

[ 331 l  

37.07 ° 

4~ 

{no] 
43.66 ° 

4~ 

[ n l ]  

43.57 ° 

[ 6 n ]  

43.57 ° 

4__9 

[322] 

49.23 ° 

Z,ROT 

~2 -6 i 3 2 iO 7 i 8 

7 42 i -4 3 16 -5 i 

2 9 2 1 Z 19 1 4 7 

2 39 -18 1 -3 -4 6 -2 -8 

-9 18 38 O ~ -I -i 9 -7 

30 -7  30 3 O -5 8 -3  -5  5 

25 30 -18 3 1 3 5 19 3 

-18  30 25 2 -i 3 5 - 24  3 

44 -5 8 3 o 2 ii 1 8 7 

8 qO -19 1 - 5  - 1  2 - 8  - 3  

-5 20 40 i I -2 iO 5 -15 

40 -5 20 2 -5  O, 1o -5  o ] 4 

13 40 -16  2 4 -1  10 I 4 -9  

-16 20 37 i 2 2 6 2 18 

35 -4  28 2 - 4  1 5 - 7  5 7 

20 36 -20 2 i -1 is 6 - i o  

-20 28 29 i 3 3 3 4 io 

42 -2  21 3 0 -2  11 -5  -7  7 

ll ; 42 *18 3 1 4 ~ ii 6 

- 18  21 38 1 -2  3 2 - 1B  3 

43 8 18 3 1 o i s  2 -s  7 

6 38 -27 - i  o -3 1 -3  -16 

-18 27 34 -i 5 -1 - 3  9 1 

4o -15 24 i -4 4 17 -s 3 2 

24 40 -15 1 i -4 20 -3 -8 

-15 24 40 1 4 1 12 8 5 

48 -4 9 4 0 1 11 -1 5 ? 

9 35 -32 O 5 i - 1  9 4 

-4 33 36 -I -i 2 -5 -4 20 

41 -12 24 3 0 3 16 -3  2 6 

24 35 -23 1 1 -6 4 9 -6 

-12 31 36 0 i '  3 -2  20 3 

Aft according to the following list: 

number Bravais class of Ag: and Af> 
1 hexagonal 
2 rhombohedral 
3 tetragonal P 
4 orthorhombic P 
5 orthorhombic C 
6 monoclin!¢ P 
7 monoclifilc C.  

Because the symmetry elements are present in both lat- 
tices (24 rotations if mirror imaging is excluded) many 
congruent CSL's can be produced by rotations around 
different axes with different angles 0. The rotation 
matrices with axes within the standard stereographic 
triangle ([100], [110], [111]) up to Z = 2 5  are given by 
Warrington & Bufalini (1971). Before that, Pumphrey 
& Bowkett (1971) gave a list containing the axis of  
rotation, the rotation angle and the Z value up to 
Z =  19. For a given X value there may exist several dif- 
ferent structures of  the CSL (and DSCL) correspond- 
ing to different solutions of  equations (1-2). For every 
possible structure of the CSL and DSCL* Table 1 
shows the rotation with lowest 0 (disorientation) and 
the axis in the standard triangle. Every CSL and DSCL 
is represented by the most cube-like right-handed unit 
cell such that the first column vector has a component 
in the direction of  the rotation axis and the other two 
vectors are as far as possible perpendicular to that axis. 

The Bravais class of Af: has been determined by a 
method described by Mighell, Santoro & Donnay in 
International Tables for X-ray Crystallography (1969). 
Once the Bravais class of A~ is known, we also know 
the Bravais class of Af~ because it is known [Cf ,  e.g., 
p. 13 of International Tables for X-ray Crystallography 
(1969)] that reciprocal lattices belong to the same Bra- 
vais class unless one lattice is f.c.c, or face-centred 
orthorhombic, in which cases the other is b.c.c, or 
body-centred orthorhombic. 

We make the following observations: up to Z = 4 9  
there exists a Af: (and Ag) that has" 

(1) (at least) tetragonal symmetry if and only if 
Z--= m2+ n 2, where m and n are integers without a com- 
mon divisor. The symmetry is even cubic if and only 
i f Z = l .  

(2) (at least) rhombohedral symmetry if and only if 
Z = m 2 + m n  +n  2, where m and n are integers without 
a common divisor. The symmetry is even hexagonal if 
and only if Z' is a multiple of  3. 

APPENDIX 

P p The aim of  this Appendix is to prove Vc = N V  1, where 
V~ and Vg: are the volumes of primitive cells of  a p.c. 

* Ishida & McLean (1972) determined the Burgers vectors 
of  boundary dislocations for the b.c.c, and f.c.c, lattices up to 
Z = 1 9 .  Unfortunately their derivation and data contain 
several errors. Acton & Bevis (1971) listed CSL matrices for 
the primitive cubic lattices up to Z =  31. 
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lattice 1 and of  the CSL obtained from it by a rota- 
tion matrix with denominator N. The proof  makes use 
of three lemmas of a number-theoretical nature. The 
following notation has been found convenient for stat- 
ing and proving these lemmas. ~e stands for the set of 
all integers, ~ for the set of all vectors that have all 
three components integral in the orthonormal crystal 
coordinate system of  Af. We denote the largest com- 
mon divisor of integers a~ , . . . ,  a, by (a~ , . . . ,  a,). a-=-b 

/I 
states that a - b  is an (integral) multiple of  n. We write 
A for the vector {A1,A2, A3}, A .  B for the scalar pro- 
duct and A × B for the vector product of A and B: 

A . B =  AiBi  + AzB2 + A3Bs 

A x B =  {A2B3-2~3B2,A3B1- A 1 B 3 ,  ~ I B  2 - ~ 2 B I }  . 

r~ stands for the i th row of the rotation matrix R and 
at: = Nr~. 

Lemma 1. N divides every component o f  a2 x a3, a3 × a~, 
and a~ x a2 

Proof: Because rl, r2 and r3 define a right-handed or- 
thonormal coordinate system, we have rt x r2=r3 and 
at x a2=Na3. Since a3 has integral components, the 
components of at x a2 must be divisible by N. The 
lemma follows if we take into account that the above 
argument can be repeated with 1,2,3 cyclically per- 
muted. 

Define o~:=(an, al2,N), fl:=(azx, a22,N), 6:=(~x, fl). 

Lemma 2. 3 = 1 

Proof: ,-i3"2 _- ~r2, _,,x~,,2 _ a~Z2 = 0 shows that the integer a13 
~t2 

is an integral multiple of ct. Similarly one shows that 
a23 is a multiple of  ft. From ~,3~"2 __ ~̂ r2, -,,at"2 _ a 2 - 0  for 

62 
i = 1,2, 3 it follows that a3i, i = 1,2, 3 are multiples of ~. 
Therefore N and the nine matrix elements a u have a 
common divisor fi, whence ~ = 1. 

Lemma 3. I f  A1,A2,A3,m c .o~, (A1,A2,m)= 1,* then the 
solutions x e ~3  of A .  x - 0  are given by x - A  x y, 

m m 
y ~ ~ [i.e. x e ~3  is a solution if and only if there 
exists y e ~3  such that each component of x differs 
from the corresponding component of A × y by a 
multiple of m]. 

Proof: (1) Assume y e ~3  =. A .  x - A .  (A x y ) = 0 ,  i.e. 
A.x_=0 .  m 

m 
(2) Assume x e ~3  satisfies A .  x - 0 .  Let m~ be the 

m 
largest divisor of m such that (m~,A0= 1 and put 
m 2 : = m / m v  Notice that (m~,m2)=(m2,A2)=l.  There 
exist integers /'1, T2 such that TtA t -  I and TzA2 = I. 

ml m2 

* Lemma 3 remains true if we replace (Aa,A2,m)= 1 by the 
weaker condition (At, A2,A3,m)= 1. However, we do not need 
this more general result. 

A classical result of number theory, called the Chinese 
remainder theorem (see, e.g., Dickson, 1957), states 
that there exist integers Y~,Y2,Y3 satisfying the follow- 
ing requirements and that these integers are deter- 
mined uniquely up to integral multiples of m: 

Yi = 0 Y2 = Tlx3 Y3 = - Tix2 
~1 m! ml 

Yi = - T 2 x 3  Y2 = 0 Y3 =- T 2 X I  • 
m2 m2 m2 

Therefore, 

X1 ml ~" Zl '41x1 ml ~ Z l ( - m ,  ~-~A2X2- A2y3-A3X3)  A3y2 } 

Xl ~- T2A2xI = A2Y3 ~- A2Y3 - A3Y2 
m2 m2 m2 

=> Xa =-- A2y3 - A3Y2 • 
m 

Similarly, we show X 2 = - - / l a Y i - - / t l y 3  and X 3 - - = A i Y 2  - 
ra r/l 

A2y~, which ends the proof. 

Theorem 1. V ~ = N V f  

Proof: V~ /V~=ord  (Gf/G~), i.e. we have to determine 
ord (G[/G~), the number of elements in the factor 

P P group G1/G o 
Let m be the largest divisor of N such that (m, c0-- 1 

and put n :=N[m.  It follows that (m,n)= 1 and, by 
Lemma 2, that (n,f l)= 1. The definition of the CSL 
implies" Rv e G~. if and only if v e .~3 and R v e  .~e3. 
Consider v ~ .~e3, we conclude: 

R v e G ~ - ~ v e ~  3 and a ~ . v = 0  for i = 1 , 2 , 3 ~  
N 

v e  ~3  and a t .  v = 0 ,  a t .  v = 0  for i = 1 , 2 , 3  (-~ stands 
m n 

for 'if and only if'). 
Since (ai~, al2, m)=  (m, ct)= 1, there exists k e .~3 such 

that 7.. a~= 1. We conclude: if Gm denotes the group 
tit 

of the x e y,3 that satisfy x .  aa = 0 then ord (Gf/G,,) = 
m. Take x c G~: m 

x .  a2=- - (a lxy ) ,  a2----(a2xal) ,  y - - 0 .  
m m 

(In the first step, we have used Lemma 3 and in the 
last Lemma 1.) Analogously we prove x .  a3 = 0. 

In the same way one shows that the x s~r3  satis- 
fying x .  a2=0  form a group G, with ord ( G f / G , ) = n  

n 
and that x .  a l = x .  a3=0  for x e G,. We conclude: 

n ?i 
R v e  G~ -:> v e G m and v e G,. The vectors v satisfy- 
ing v e Gm and v s G, form a group G, which is iso- 
morphic with G~. or'd ( G f / G ) = m .  n because (m,n)= 1. 
Therefore ord (Gf/G~) = m . n = N. 

This Appendix has largely profited from discussions 
with Dr M. Ojanguren. 
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Instrumental Widths and Intensities in Neutron Crystal Diffractometry 
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The amplitude and the shape of the quasielastic resolution function of a neutron two-axis spectrometer 
are calculated in the Gaussian approximation. Special attention is given to the explicitness of the for- 
mulae as well as to their absolute correctness, avoiding any unknown proportionality factors. The 
results are applied to the analysis of the elastic scattering of neutrons in crystals. 

1. Introduction 

In an experiment to analyse the angular distribution of 
scattered neutrons, carried out with a crystal diffrac- 
tometer (two-axis spectrometer), the finite collimations, 
the monochromator mosaic structure and the beam- 
path configuration influence both the counting rate 
and the experimental line width. This influence should 
be quantitatively described by an instrumental func- 
tion, the so-called resolution function. 

The knowledge of the resolution function makes 
possible the choice of advantageous experimental 
conditions as well as the correct interpretation of 
experimental data. That is why great attention has been 
paid to the problem of determining the dependence of 
the diffractometei" resolution function on all experi- 
mental factors. 

The early papers in which resolution effects were 
considered deal with elastic-scattering experiments, 
their principal aim being the calculation of Bragg peak 
width and relative intensities for some usual experi- 

mental methods (Caglioti, Paoletti & Ricci, 1958' 
1960; Caglioti & Ricci, 1962; Sailor, Foote, Landon & 
Wood, 1956; Willis, 1960). 

In a more general treatment, Cooper & Nathans 
(1968a) have shown, also for elastic experiments, that 
the counting rate is given by the convolution, in the 
space of wave-vector transfers Q ( Q = k ~ - k s ) ,  of the 
scattering cross section with the resolution function 

I(Q°) = I a(Q)R(Q)dQ.  

Q0 is the nominal setting of the instrument as defined 
by the most probable wave vectors kx and kF. In the 
Gaussian approximation, assuming that both the 
transmission functions of collimators and the reflec- 
tivity of the monochromator crystal are Gaussian-like 
functions, the elastic resolution function of the dif- 
fractometer can be written 

3 
R(Qo+X)=R0 exp { -½  ~ M~X~Xj) (1) 

i , . i =  l 


